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Several physical systems, such as nonrelativistic and relativistic magnetohydro-
dynamics (MHD), radiation MHD, electromagnetics, and incompressible hydrody-
namics, satisfy Stoke’s law type equations for the divergence-free evolution of vector
fields. In this paper we present a full-fledged scheme for the second-order accurate,
divergence-free evolution of vector fields on an adaptive mesh refinement (AMR)
hierarchy. We focus here on adaptive mesh MHD. However, the scheme has appli-
cability to the other systems of equations mentioned above. The scheme is based on
making a significant advance in the divergence-free reconstruction of vector fields.
In that sense, it complements the earlier work of D. S. Balsara and D. S. Spicer
(1999,J. Comput. Phy<7, 270) where we discussed the divergence-free time-update
of vector fields which satisfy Stoke’s law type evolution equations. Our advance
in divergence-free reconstruction of vector fields is such that it reduces to the total
variation diminishing (TVD) property for one-dimensional evolution and yet goes
beyond it in multiple dimensions. For that reason, it is extremely suitable for the con-
struction of higher order Godunov schemes for MHD. Both the two-dimensional and
three-dimensional reconstruction strategies are developed. A slight extension of the
divergence-free reconstruction procedure yields a divergence-free prolongation strat-
egy for prolonging magnetic fields on AMR hierarchies. Divergence-free restriction
is also discussed. Because our work is based on an integral formulation, divergence-
free restriction and prolongation can be carried out on AMR meshes with any integral
refinement ratio, though we specialize the expressions for the most popular situation
where the refinement ratio is two. Furthermore, we pay attention to the fact that
in order to efficiently evolve the MHD equations on AMR hierarchies, the refined
meshes must evolve in time with time steps that are a fraction of their parent mesh’s
time step. An electric field correction strategy is presented for use on AMR meshes.
The electric field correction strategy helps preserve the divergence-free evolution of
the magnetic field even when the time steps are subcycled on refined meshes. The
above-mentioned innovations have beenimplemented in Balsara’s RIEMANN frame-
work for parallel, self-adaptive computational astrophysics, which supports both non-
relativistic and relativistic MHD. Several rigorous, three-dimensional AMR-MHD
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test problems with strong discontinuities have been run with the RIEMANN frame-
work showing that the strategy works very well. In our AMR-MHD scheme, the
adaptive mesh hierarchy can change in response to discontinuities that move rapidly
with respect to the mesh. Time-step subcycling permits efficient processing of the
AMR hierarchy. Our AMR-MHD scheme parallelizes very well as shown by Balsara
and Norton [8] (© 2001 Elsevier Science

Key Words: magnetohydrodynamics; adaptive mesh refinement; numerical
schemes.

I. INTRODUCTION

It is well known that several problems in science and engineering would benefit gres
from using a multiscale strategy for their solution. Brandt [16] and Berger and Olig
[11] showed the worth of adaptive mesh refinement (AMR) in scientific and engineeri
calculations. Berger and Colella [12] made a dramatic advance by showing the usefuls
of AMR techniques for solving the Euler equations in the presence of strong shocks. S
equations satisfy a conservation law of the form:

U oF 9G oH
—+—+—+—=0. 1.1
at + X + ay + a9z (2.1)

HereU is the vector of conserved variables aRdG, andH are the flux vectors in the

three directions. By using Gauss’s law, equations of the form given in Eq. (1.1) can
written in a fully conservative form. The conservative form makes it possible for the
systems of equations to admit physically meaningful discontinuous solutions such as sh
and contact discontinuities. For that reason, Colella [20] designed a multidimensiol
conservative, higher order Godunov scheme for the solution of such equations. Such hi
order Godunov schemes are widely thought to be the most reliable and accurate schem
solving conservative hyperbolic systems. The loss of strict conservation causes equatio
the form given in Eq. (1.1) to develop unphysical solutions. In order to have a conserval
solution strategy on an AMR mesh hierarchy, Berger and Colella [12] had to make numer
innovations. First, they used a bilinear interpolation strategy for prolonging the solution &
the boundary information from a coarse level to the child meshes that constitute the
level. They did, however, mention that by using the very same reconstruction strat
that is used in the underlying higher order Godunov scheme they would have obtai
conservative prolongation. Second, they had to design a restriction strategy for transfel
the more accurate fine mesh solution to the parent coarse meshes. They did this by us
volume-weighted restriction strategy that was very close in spirit to the volume-averag
representation of variables in the underlying higher order Godunov scheme. Third, t
realized that the restriction could cause a loss of conservation at the interfaces betwe
fine and a coarse mesh. They showed that this loss of conservation could be rectifie
using a consistent set of fluxes at the fine—coarse interface. Consistency of the fluxes c
be restored via a flux correction step. As a result, exactly conservative evolution of the E|
equations is guaranteed in the strategy of Berger and Colella [12] as long as the level
properly nested, one within the other. They also realized that Courant number limitati
on a fine mesh would cause it to take time steps that are an integral fraction smaller thau
coarse mesh time steps. This integral fraction is the reciprocal of the refinement ratio
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To retain efficiency in processing the entire AMR hierarchy, they made a fourth innovatic
which was to permit the fine mesh’s time steps to be subcycled so that a fine mesh fi
itself time-synchronized with its parent coarse meshes every time it has taken “r” time ste
The AMR innovations by Berger and Colella [12] were very successful because they w
based on a small number of well-thought out and easily implemented principles. As a res
AMR strategies for solving conservation laws routinely use the techniques developec
Berger and Colella[12]. Balsara and Norton [8] showed that such AMR schemes (and tl
MHD variants) can be easily and efficiently parallelized on parallel supercomputers w
large numbers of processors, thereby enhancing the utility of such techniques. The resu
AMR-MHD scheme has been implemented in Balsara’s RIEMANN framework for paralle
self-adaptive computational astrophysics.

While several physical systems satisfy a set of equations that can be written in con
vation form, not all physical systems satisfy such equations. Several important system
equations, such as the Maxwell equations for electromagnetism and the MHD equati
satisfy a different update equation given by Faraday’s law, which has the form

9B
S TCVXE=0, (1.2)

whereB is the magnetic field; is the electric field, and c is the speed of light. Other impor-
tant systems of equations that satisfy an update equation of this form include the equat
of incompressible flow, radiation MHD, and relativistic MHD. In the specific cases of ide:
MHD, radiation MHD, and relativistic MHD the electric field is given by

1
E=——VxB, (1.3)

wherev is the fluid velocity. Examination of Eq. (1.2) shows that it is fundamentally differer
from Eq. (1.1). Unlike Eq. (1.1), Eq. (1.2) does not require the components of the magn
field to be conserved in a volume-averaged sense. Equation (1.2) does predict, via a
cation of Stoke’s law, that the magnetic field remains divergence-free. The divergence-
evolution of the magnetic field in Eq. (1.2) has animportance in the design of computatio
schemes for MHD that is on par with our requirement that systems of equations that sat
Eg. (1.1) be discretized in a conservative fashion. Loss of divergence-free evolution
been shown to result in unphysical solutions by several authors; for example, see Bal
and Spicer [7] and Toth [43]. Brackbill and Barnes [14] and Brackbill [15] have shown th
violating theV - B = 0 constraint leads to unphysical plasma transport orthogonal to tl
magnetic field as well as a loss of momentum and energy conservation. This comes aboL
cause violating the constraint results in the addition of extra source terms in the momen
and energy equations. Schemes for numerical MHD that do not satisty thi&= 0 con-
straint and also violate momentum and energy conservation have indeed been designec
for example, the scheme of Powell [37]. In this respect, the demonstration by Toth [43] t
the MHD scheme of Powell [37] produces unphysical results is particularly convincing a
shows the practical utility of the reasoning in Brackbill and Barnes [14] and Brackbill [15
Powell et al. [38] did attempt to use the scheme of Powell [37] for solving the MHD
equations on a three-dimensional AMR hierarchy. Their reasonable initial expectation \
that as the mesh is refined, the discretization error decreases, resulting in smaller violat
of the V. B = 0 constraint on successively refined meshes. However, Petvall [38]
found that violation of thé&/ - B = 0 constraint on one level in the AMR hierarchy causes
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theV . B = 0 constraint to be violated to the same relative extent on all levels in the AM
hierarchy. Thus, using a sequence of finer meshes, with their smaller discretization er
did not cause the undivided difference of the divergence of the magnetic field to decre
relative to the mean magnetic field on the successively refined meshes. The problems po
out by Toth [43], therefore, degraded the solution to equal extents on all levels of the Al
hierarchies thatwere generated by Powtdll.[38]. Thus, we conclude that mesh refinement
is an inadequate foil against a scheme for numerical MHD that is not divergence-free
violation of divergence-free evolution of the magnetic field on one level inan AMR hierarcl
eventually pollutes the solution at all levels of the AMR hierarchy. Physical systems tl
satisfy equations of the form given in Eq. (1.2) are of great importance in several area
science and engineering. This has caused us to devote careful attention to the divergenc
evolution of vector fields on an AMR hierarchy. In a fashion that is completely analogo
to Berger and Colella [12], the purpose of this paper is to design and catalogue a si
number of well thought out and easily implemented principles for the accurate, efficie
and divergence-free time-evolution of vector fields that are governed by an equation of
form given in Eg. (1.2) on AMR hierarchies. We take ideal MHD as our system of intere
in the rest of this paper because it is of great importance in astrophysical and space ph
applications. For the rest of this paper we will also assume that a refinement ratio of tw
used in constructing the AMR hierarchy, though the formulation developed here is ea
extended to other refinement ratios.

The conservation that is implicit in the structure of Eq. (1.1) is held to be an importe
enough property for the Euler equations that almost all schemes enforce a discrete vel
of it at each zone of the computational mesh. The divergence-free evolution of vector fie
that is implicit in the structure of Eq. (1.2) is also held to be an equally important proper
Thus, most practitioners have seen the value of enforcing a discrete version of diverge
free time-evolution of magnetic fields at each zone. This can be done via a “staggered n
magnetic field transport algorithm” where the magnetic field components are collocate
the face-centers of each zone and the electric field components are collocated at the ¢
centers of the zones. Stoke’s law is then applied to Eq. (1.2) to yield a discrete time-up«
strategy for the face-centered magnetic fields. Because it follows from a discrete versio
Stoke’s law, the resulting discrete time-update strategy clearly shows that if the magn
field is divergence-free at the beginning of a time step, it will remain so at the end of the ti
step. Such an algorithm was first proposed by Yee [45] for the transport of electromagn
fields. Later Brechét al.[17] combined such a discretization strategy with a nonlinear flu
corrected transport (FCT) based flux limiter in their global MHD modeling of the Earth
magnetosphere. Evans and Hawley [24] then implemented the hybrid scheme develope
Brechtetal.[17]in their artificial viscosity based formulation, coining the term “constraine
transport.” Contemporaneously with Evans and Hawley [24], DeVore [23] applied the sa
constrained transport scheme to a FCT algorithm. Stone and Norman [42] made a varia
the scheme of Evans and Hawley [24] where they split the MHD eigenstructure int®a 2
hyperbolic subsystem for the Alfven waves. This makes the entire fluctuation in the magn
field propagate at the Alfven speed. While some hyperbolic systems can be splitinto sm:
subsystems, the MHD equations do not permit such a split; see Jeffrey and Taniuti [:
Thus, splitting the MHD eigenstructure into a2 subsystem by Stone and Norman [42]
constitutes an algorithmic flaw in their ZEUS code for astrophysical MHD. It results, amo
other things, in postshock oscillations developing in magnetosonic shocks of even mo
strength unless an unacceptably large artificial viscosity is used. On AMR hierarchie
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flaw in the underlying solver gets magnified because the solution is propagated at all lex
For that reason, we would discourage the use of such solvers for AMR-MHD applicatio

While Eq. (1.2) implies divergence-free evolution of magnetic fields, the equations
MHD are indeed hyperbolic equations and can be viewed on a dimension by dimens
basis as having a conservative form. This fact has been used by numerous authors to d
accurate, robust, and reliable higher order Godunov schemes for numerical MHD. A b
list includes Brio and Wu [18], Zachary, Malagoli, and Colella [46], Powell [37], Dai an
Woodward [21], Ryu and Jones [40], Roe and Balsara [39], and Balsara [1, 2]. Bals
[5] has also designed higher order Godunov schemes for relativistic MHD. Almost
of these authors have shown at least some awareness of the fact that it is importa
preserve the divergence-free aspect of the magnetic field. Dai and Woodward [22], F
et al. [41], and Balsara and Spicer [7] showed that simple extensions of higher orc
Godunov schemes permit one to formulate divergence-free time-update strategies fol
magnetic field. Londrillo and Del Zanna [34] have shown that a staggered mesh formulat
of the form used by the above three references is fundamental to divergence-free evolt
of the magnetic field. Toth [43] has made a comparative study of such schemes and fc
the scheme of Balsara and Spicer [7] to be one of the most accurate second-order sch
that he tested. It is, therefore, our goal to draw on the accuracy and robustness of hi
order Godunov schemes and the staggered mesh formulation of Balsara and Spicer [
design a robust and accurate divergence-free scheme for AMR-MHD.

Balsara and Spicer [7] formulated a divergence-free time-update strategy for the magr
field, which we briefly review in Section Il while simultaneously extending it to include
resistive MHD. However, we did not formulate a strategy for making a divergence-free |
construction of the magnetic field. Experience with the Euler equations has shown that
reconstruction strategy of the underlying scheme is important for making conservative |
longation of solutions on AMR hierarchies. For that reason, we formulate a divergence-f
reconstruction strategy in Section Ill. In Section IV, we show that a slight extension of t
divergence-free reconstruction strategy of Section Il yields a general-purpose diverget
free prolongation strategy for use on AMR hierarchies. Berger and Colella[12] also desig
a volume-weighted restriction strategy for restricting fine mesh solutions to coarse mes|
In Section IV, we too design an analogous strategy for area-weighted restriction of magn
fields from fine meshesto coarse meshes. Berger and Colella[12] also provided a flux col
tion strategy that needs to be applied at the interfaces between fine and coarse meshe:
the fine mesh’s time steps have been subcycled. Their flux correction strategy was esse
for ensuring conservative updates on the AMR hierarchy. In Section V we provide an ane
gous electric field correction strategy that needs to be applied at the interfaces betweer
and coarse meshes after the fine mesh'’s time steps have been subcycled. The electric
correction strategy ensures divergence-free update of magnetic fields on AMR hierarct
In Section VI, we show that our scheme for divergence-free time-evolution of magne
fields on AMR hierarchies works very well for several stringent MHD test problems eve
in the presence of strong magnetosonic shocks. In Section VII, we offer some conclusic

II. REVIEW AND EXTENSION OF THE NUMERICAL MHD SCHEME
OF BALSARA AND SPICER [7]

Balsara and Spicer [7] constructed a divergence-free scheme for ideal MHD. In t
section we recapitulate the essentials of their scheme while at the same time showing
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it can be naturally extended to resistive, nonideal MHD. The MHD equations can be cas
a conservative form that is suited for the design of higher order Godunov schemes. In
form they become

3U+8F+8G+8H+8F,+BG,+3Hr
at axX oy 0z X ay 7z

—0, (2.1)

whereF, G, andH are the ideal fluxes arfg,, G;, andH, are the fluxes from the resistive
terms. In the resistive case, the electric field that is to be used in Eqg. (1.2) is given by:

1
E=—“vxB+-—VxB 2.2)
(o 4ro

Written out explicitly, Eq. (2.1) becomes

0 PVx
PVx oV2 + P+ B?/87 — B2/4x
PVy pVxVy — ByBy /41
9 PVz n 9 OVxVy — ByB, /4
ot| € | 0% | (g4 Py B2/Br)ve— By(v-B)/dn
By 0
By (VxBy — vyBy)
B, —(V;Bx — VxBy)
PVy PVz
pVxVy — BxBy /4w PVyVy — ByB,/4m
pV2+ P+ B?/87 — B /4m pVyV; — ByB, /41
d oVyV, — ByB, /41 9 oV + P+ B?/81 — B2/4n

oy (€ + P+ B?/8m)vy—By (V- B)/4n 92| (£ +P+B?/87)v, — B, (v-B)/4n

—(VxBy — vyBy) (VzBx — vxB2)

0 —(vyB; — v;By)
(vyB; — v;By) 0
0 0 0
0 0 0
0 0 0
3 0 9 0 9 0
X ay 9z B
0 Z(VxB), —2=(V xB),
C2
— 5 (VxB), 0 Z(V x B)y
25 (VxB)y —Z.(VxB), 0

(2.3)

where€ = pv? 4 P/(y — 1) + B?/8x is the total energy and is the conductivity of the
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plasma. We see that the flux components of the ideal MHD terms as well as the resis
terms obey the following symmetries:

Fr=-Gs, Fg=—-Hs, Gg=—-Hzs, F7=—-Gg,

(2.4)
Fr,8 = _Hr,6, Gr,8 = _Hr,7~

The Balsara and Spicer [7] scheme is based on realizing that there is a dualism betv
the fluxes that is produced by a higher order Godunov scheme and the electric fields
are needed in Eq. (1.2). The dualism is put to use by capitalizing on the symmetrie:
Eqg. (2.4). In a higher order Godunov scheme that is spatially and temporally seco
order accurate, the flux variables are available at the center of each zone’s face usi
straightforward higher order Godunov scheme. These fluxes are spatially second o
and temporally centered. The last three components df ti& andH fluxes can also be
reinterpreted as electric fields in our dual approach. The electric fields are needed at the
centers as shown in Fig. 1 and are to be used to update the face-centered magnetic f
Thus, the Godunov fluxes as well as the contributions from the nonideal terms are dire
assigned to the edge centers as follows [Egs. (2.5) to (2.7) should not be viewed as m
equations]:

En+l/2
o0+ 1/2,k+1/2
1 ne12 nt1/2 nt+1/2 nt+1/2
4C(H7 iken2 HH7 ka2 — Gaihajzk — Gsljra/2ki1)
C 1 n n 1 n n
STo <A_y (Bz,i,j+1,k+1/2 - Bz,i,j,k+1/2) - E (By,i,j+1/2,k+1 - By,i,j+1/2,k)
c 1 i n+1 1 ni n+l
870 <A_y (Bz,i,j+1,k+1/2 - Bz,i,j,k+1/2) - E (By,i,j+1/2,k+1 - By,i,j+1/2,k) (2-5)
nt1/2
By it12) k12
nt1/2 nt1/2 nt1/2 nt+1/2
4C(Fs i+1/2)k T Feit12jke1 — Heijkry2 — H6,i+1,j,k+1/2)
C 1 1
+ 870 (E (BQ.i+1/2,j,k+1 - BQ,i+1/2,j,k> - B (Bg,i+1,j,k+1/2 - Bg,i,j,k+1/2))
c 1 1
+1 1 1 1
+ 870 (Az (BYit1/2jke1 — BXitajzjk) — Ax (Bl ke1j2— Bg,i,j.k+1/2)> (2.6)
En+1/2
2i+1/2,j+1/2.k
1 12 nt+1/2 nt1/2 nt1/2
=1 (Ge,i,j+1/2 kt Geittjryak — Frivieik — izt K
C 1 n n 1 n n
+ 8o <Ax (By.i+1,1'+1/2.k - By,i,i+l/2,k) T Ay (Bx,i+1/2,j+1,k - Bx,i+1/2,j,k)
c 1 1 1 1 1
t 8.0 (E(Bﬁmwz,k A Ay(Bx 2k~ Biitiein)] 7)

In the above equations as well as in Fig. 1 we have assumed a Cartesian mesh with edc
sizeAx, Ay, andAz. Balsara and Spicer [7] do treat more general geometries for the ide



DIVERGENCE-FREE AMR-MHD 621
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FIG. 1. The collocation of the magnetic fields at the control volume’s faces and the collocation of elect
fields at the control volume’s edges.

MHD case and the results developed here can also be easily extended to general geom:
Notice that in Egs. (2.5) to (2.7) we have discretized the resistive terms so that they h
a semi-implicit form. This should make them numerically stable for any choice of tirr
step. As a result, the time step can be set by the Courant number that is permitted by
underlying hyperbolic system solver. Notice too that the resistive terms are spatially
temporally second-order accurate. The resistive terms have an elliptic form which ma
the implicit part in Egs. (2.5) to (2.7) amenable to solution via any iterative multigrid
Krylov subspace method. The divergence-free restriction and prolongation strategies
we have developed in succeeding sections should be very important in the constructic
iterative schemes for divergence-free treatment of resistive MHD. We will take up issL
associated with resistive MHD in a subsequent paper. In this paper we stay focussed o
ideal MHD case.

The zone-centered variables, i.e., the first five components of the \&dtoEq. (2.1),
can be updated in the normal fashion in which conserved variables are routinely upd:
in a higher order Godunov scheme. The magnetic fields are updated by applying a disc
version of Stoke’s law to Eq. (1.2) which yields

CAt
1 +1/2
BRii1/2)k = BRirt/zjk — 7AyAz( ZE; i 12112k — AZ E2I+1/2J 12k
nt1/2 nt1/2
+ AYE) 2 k12 — AYE) i 2 k112) (2.8)

CAt
n+1 _ @n ni1/2 n+1/2
Byii—1/2k = Byij_12k — —AXAZ( XE i iC12k412 — AXE D10 ko172

+1/2 12
+Az E2| 12j-12k — AZ E; i+1/2j—1/2, k) (2.9)
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CAt n+1/2 n+1/2
Bz ikl = BQ,i,j.k+1/2 - —AxAy< XEiiCyaki12 — AXEG 26012
n+1/2 n+1/2
+AYE i1 ki12 — AY By T2, k+1/2) (2.10)

Ill. DIVERGENCE-FREE TVD RECONSTRUCTION OF MAGNETIC FIELDS

It has long been known from AMR simulations of the Euler equations that conservati
TVD reconstruction was one of the key ingredients in the conservative update of flow ve
ables on AMR hierarchies. In like fashion, we suspect that divergence-free TVD reconstr
tion of vector fields is one of the key ingredients in the divergence-free update of magn
fields on AMR hierarchies. In this section we analyze the problem of divergence-free T\
reconstruction of magnetic fields for use on AMR hierarchies. Our method is based
the staggered mesh formulation for the divergence-free time-integration of magnetic fie
given in Balsara and Spicer [7]. Toth [43] has presented a zone-centered formulation
the divergence-free time-integration of magnetic fields, which is easily shown to be am
averaging of the scheme of Balsara and Spicer [7]. We work within the context of the st
gered mesh formulation because it has the following advantages over Toth’s zone-cent
formulation for AMR-MHD work:

1. The control volumes over which the discrete divergence-free condition is satisf
in Toth’s formulation cannot exactly cover a logically rectilinear mesh. As pointed out &
Evans and Hawley [24], the inflow or outflow of plasma from the boundary of the me:
can be an important source of introducing divergence into the magnetic field. When
control volumes for the conserved variables and the discrete divergence-free condition
coincident, the divergence-free condition is easy to satisfy even at the boundaries. W
that is not the case, satisfying the divergence-free condition exactly at the boundarie
not possible. For that reason, Toth’s formulation cannot take naturally to general bounc
conditions.

2. The issue of control volumes also plays a role in AMR. The reason is that when
grid lines, the lines of all control volumes, and the lines that delineate refinement patc
in AMR are all aligned with each other, one can enforce several constraints, including
divergence-free one, quite trivially. That is not the case when the control volumes on wh
the divergence-free constraint is enforced are not aligned with the zones of the mesh.

3. One might want to resort to multigrid cycling for resistive MHD or for implicit MHD.
In those cases it is very useful to have a mesh hierarchy where the boundaries of the co
volumes at coarser levels in the multigrid hierarchy are coincident with the boundar
of the control volumes at finer levels. All the staggered mesh formulations satisfy tt
property; the zone-centered formulation of Toth does not satisfy this property. Furtherm
the methods built up in the next section permit one to carry out divergence-free restrict
and prolongation of magnetic fields on such meshes.

In the first section we provide a detailed discussion of the problem of divergence-fi
reconstruction of magnetic fields in two dimensions. In the second section we do the s:
for divergence-free reconstruction of magnetic fields in three dimensions. The problen
divergence-free prolongation of magnetic fields on AMR hierarchies will be discussed
the next section and will be shown to be an extension of the reconstruction theory develc
here. Because divergence-free TVD reconstruction represents a significant contributio
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the theory of reconstructing divergence-free vector fields, we develop it thoroughly in t
section. This thorough development will also help in the next section where we disc
divergence-free prolongation of magnetic fields on AMR hierarchies.

[ll.1. Divergence-free Reconstruction of Magnetic Fields in Two Dimensions

In this section we focus on the divergence-free, spatially second-order accurate re
struction of the magnetic field in two dimensions. The reason for wanting to catalog
such a reconstruction is that it is much simpler to demonstrate the reconstruction pre
dure with mathematical details in two dimensions than to do the same in three dimensi
The reconstruction strategy that is developed in this section would also be very useful
two-dimensional AMR-MHD codes. The three-dimensional extension of these ideas f
lows trivially and we shall give formulae for the three-dimensional case in the next secti
Most importantly, we wish to demonstrate that there is an equivalence between con
tional TVD reconstruction and the reconstruction developed here. We start with the x- ¢
y-components of the magnetic field which are assumed to be given at the x and y zone f
of a Cartesian mesh. LetB= By.i+1/2j denote the magnetic field at the zone’s upper x fact
and let B =By i_1/2; denote the magnetic field at the zone’s lower x face. Likewise, le
B;L = By.i j+1/2 denote the magnetic field at the zone’s upper y face andyﬂet By,ij-1/2
denote the magnetic field at the zone’s lower y face. In order to make a second-ordel
curate reconstruction of the magnetic field in the zone of interest, we need to minimz
fit piecewise linear profiles for Bin the x zone faces. Similarly, we need to fit piecewise
linear profiles for $ inthe y zone faces. Such piecewise linear profiles can be fitted witho
changing the fact that the divergence of the magnetic field evaluated over the zone f
is zero. These profiles can be obtained via a slope limiter and in the simple case whe
minmod limiter is used, they are given by

AyB; = minmod(By ix1/2j+1 — Bxiz1/2j, Bit1/2j — Bxit1/2j-1) (3.1)

AxBy = minmod(By,i1+1/2 — By,ije1/2, Byje1/2 — Byi-1j1/2)- (3.2)

Different limiters can be used in place of the minmod limiter and we use the minmod limit
only as an instantiation. One can even use the piecewise-linear WENO interpolation fi
Jiang and Shu [31] to provide a form of nonoscillatory reconstruction, which reduces
clipping at extrema. It will be shown later that there are certain distinct advantages to
gained by fitting limited linear profiles instead of unlimited linear profiles. We locate tt
origin at the zone center of the zone being considered. As a result, the variatiQranfiB
By in the upper and lower x and y zone faces is given by

+ ABy
B +Ay/2) = B AxBy 3.4
y(X, Yy = £Ay/2) = y'FWX- (3.4)

To simplify the notation, we set the origin at the zone center. The zone has edges of
Ax andAy.

The problem of reconstructing the magnetic field components in the zone given
[—AX/2, AX/2] x [-Ay/2, Ay/2] reduces to fitting functions on the interior of the zone
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so that they match the four linear profiles fog 81d B, given above in the x and y zone
faces. It is not acceptable to fit any two arbitrary functions foreBd B,. This is be-
cause the divergence-free aspect for the reconstructed fields will not be retained in
interior of the zone in that case. Instead, we wish to fit two polynomial functions, ol
for By and one for B, which have the special property that their divergence is exactl
zero at all points within the zone. Should we be successful in finding such polynon
als, we will be able to evaluate transverse magnetic field components on either side
each zone face. This would be very useful for providing the left and right states for
Riemann solver. We can also use such polynomials to make area-weighted prolongatic
the magnetic field components to any of the faces of a refined zone that may lie within
zone of interest. Such a prolongation of the magnetic field will be inherently divergence-fi
because it is derived from a reconstruction that is divergence-free in a continuous sens
is easy to see that using piecewise linear polynomials for the two functions would prc
inadequate. Thus, we consider a quadratic representation which we write as

Bx(X, ) = 8 + &X + &Y + 8xX? + ayXY + ayYy? (3.5)
By (X, y) = bo -+ byX + byy + byx® + byyxy + byyy?. (3.6)

Because we have to fit linear profiles at the zone faces we set
ay = by =0. (3.7)

Imposing a divergence-free condition in a continuous sense gives three further constre
on the coefficients of the two polynomials given above. The constraints are

a+by =0 2ax+by=0 ay+2hy=0. (3.8)

When the reconstructed magnetic fields in Egs. (3.5) and (3.6) satisfy the constraints g
in Egs. (3.7) and (3.8), the reconstructed magnetic fields will be divergence-free inthe er
zone.

After accounting for all the constraints in Egs. (3.7) and (3.8) we see that the two polyr
mials for B, and B, that are given by Egs. (3.5) and (3.6) have seven independent coefficiet
The variation of B and B, in the x and y zone faces is given by Egs. (3.3) and (3.4) an
can be described by exactly seven independent numbers since the divergence-free a
of the magnetic field requires an integral constraint to be satisfied in discrete form. T
constraint is given by

(BY — BYAYy+(By — B))Ax=0. (3.9)

The reconstruction polynomials for,Bnd B, that are given by Egs. (3.5) and (3.6) should
match the linear profiles that have been fitted to the boundaries in Egs. (3.3) and (¢
Making this match at the boundaries is tantamount to equating linear combinations
the seven independent coefficients in Egs. (3.5) and (3.6) to the seven independent r
bers in Egs. (3.3) and (3.4) and yields seven independent equations. The seven equé
form a linear system which can be inverted to yield the seven independent coefficient
Egs. (3.5) and (3.6). On carrying out the algebra we get

_ . _(Bf-B) _ (By—By)
&= b= AX Ay

(3.10)
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b — %(Ai; n AA—'iy) (3.12)
ay = -2, = o (25 2B ) (3.13)
ey = —230 Aiy (Af - Ag?f) (3.14)
_ (B 42r B _ aXXATXZ (3.15)
- (BV+JZFBV_) _ yATyz, (3.16)

Thus, we have demonstrated that we can indeed make an exact, divergence-free recon
tion of the magnetic field inside the zone that matches the linear profilesanidB, at the
zone’s faces. This reconstruction can now be used in an area-weighted sense to prolor
magnetic field to the faces of any refined zone that lies within the zone being conside
Realize too that if the same reconstruction strategy is applied to two zones that share a
then it will produce the same linear profile for the magnetic field component on the sha
face. As a result, the refined zone to which we want to prolong magnetic field compone
can even have faces that coincide with coarse zone faces. We have, therefore, shown t
two dimensions it is possible to make a divergence-free prolongation of the magnetic f
to any refined zone. For the two-dimensional case, the reconstruction theory develope
this section can be directly used for divergence-free prolongation on AMR hierarchies :
no further extension of the theory is needed.

When allthe variations are restricted to one dimension, our divergence-free reconstruc
strategy reduces to standard TVD reconstruction. This will be explicitly demonstrated
the three-dimensional case in the next section. An analogous demonstration can als
shown to hold true for the two dimensional case.

[ll.2. Divergence-Free Reconstruction of Magnetic Fields in Three Dimensions
To establish some notation we refer the reader to Fig. 1. As in the previous section,
establish a short-form notation that is given by
B = Byiz1/2jk Bff =Byijc1/2k; BF =Byijka1/2: (3.17)

The limited slopes for these variables are given by

AyBY = minmod(By,ix1/2j+1.k — Bxiz1/2j.k: Bxit1/2jk — Bxit1/2j-1k) (3.18)
A,By = minmod(By i+1/2j k1 — Bxit1/2j.k Bxiz1/2jk — Bxit1/2jk-1) (3.19)
AxBjE = minmod(By,i;1j+1/2k — By.ijt1/2k Byije1/2k — Byi-1jt1/2k) (3.20)
AZB;E = minmod(By, j+1/2k+1 — By.ijt1/2.k Byije1/2k — By.ijz1/2k-1) (3.21)

AxB; = minmod(Byi11jkt1/2 — Bzijket/2, Bijke1jz — Bri1jkci/2) (3.22)
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AyBE = minmod(Byij+1kt1/2 — Bzijke1/2s Boijketjz — Brij-1ke1/2)- (3.23)

In a fashion that is entirely analogous to the two-dimensional case, the piecewise lir
variation of B, By, and B in the x, y, and z zone faces are given by

ABZE A,BE
By(X = £AX/2,y, 7) = Bf + XXy —2°X 3.24
x(X X/2,Y,2) .+ Ay Y+ 2 (3.24)
ABE A,BE
By(X,y = +Ay/2, 2 = B Y x Y7 3.25
y(X, Y y/2,29 =By + —= "X+ —— (3.25)
ABF A,BF
B,(X,Y, z= +Az/2) = BF X~z 2y 3.26
2(X, Y, Z z/2) 2zt Xt Ayy (3.26)

To simplify the notation, we set the origin at the zone center. The zone has edges of
AX, Ay, andAz.

The reconstructed fields in the interior of the zone givenbgxk/2, Ax/2] x [—Ay/2,
Ay/2] x [-Az/2, Az/2], which match the linear variation of the fields on the zone face:
can be written as

Bu(X, Y, 2) = @ + &X + &Y + &Z + axX* + &y Xy + aXZ (3.27)
By(X, ¥, 2 = b + byX + byy + b,z + byyxy + byyy? + by,yz (3.28)
B2(X, ¥, D) = Co+ CxX + GyY + CoZ+ CoXZ + CyryYZ + Crp 2. (3.29)

Imposing the divergence-free condition in a continuous sense gives four further constra
on the coefficients of the three polynomials given by Egs. (3.27) to (3.29). The constrai
are

ax+by+cz=0; 26&x+bxy+sz=0; axy‘|‘2Q/y+cyz=0; 39(z+byz+202220-
(3.30)

After accounting for all the constraints in Eq. (3.30) we see that the above polynomi
for By, By, and B that are given by Egs. (3.27) to (3.29) have 17 independent coefficien
We insist on matching one field component along with its two transverse variations on e
of the six faces of the zone; see EQs. (3.24) to (3.26). This yields 18 conditions out of wh
one is dependent on the others, being given by the discrete divergence-free condition

(By —By)AyAz+ (Bj —B))AxAz+ (B} —B;)AxAy = 0. (3.31)

This results in 17 conditions that need to be satisfied by the reconstructed fields wh
we recall, have 17 independent coefficients. This reduces the problem to straightforw
algebraic manipulation. While inverting a X717 matrix may seem like a daunting task,
a little examination of the matrix shows that it splits up into several independerit 2
subsystems, each of which is easily inverted. On carrying out the algebra we get

a — B =B

~ (3.32)
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1/AyBf  AyBy
=-|———+— 3.33
3 2( Ay T Ay (3.33)
1/AB}  AB;
== 3.34
& 2( Az + Az ( )
1 /ABf  AB;
- - 3.35
Sy Ax( Ay Ay ( )
1 /ABf  AB;
- _ 2% 3.36
Be Ax( Az AZ (3.36)
1
&x = _é(bxy + Cx2) (337)
(B} + By) AX?
= —— —ax——. 3.38
5 — (3.38)

To obtain the formulae for the coefficients in Eq. (3.28), make the following replaceme
a—b,b—c,c— a x—yy— zand z— xin Egs. (3.32) to (3.38) above. Similarly, to
obtain the formulae for the coefficients in Eq. (3.29), make the replacemesnts,d —
a,c—> b, x— z,y— xand z— y in Egs. (3.32) to (3.38) above. Allow self-evident
permutations of the form,g= c,;.

The volume-averaged magnetic field component in the x-direction in the zone be
considered is given by

(B +By) AX?
(Bx>vo|-avg = % - aXXT- (3-39)

We see that Eq. (3.39) is not exactly the mean x-component of the field evaluated at the :
center. The inclusion of the divergence-free reconstruction can cause small changes be
of the need to maintain the continuous divergence-free condition within the zone. Howe
itis also noteworthy that the difference i$&x?). Thus, the zone-averaged fields evaluatec
above are comparable to the mean fields up to second-order accuracy. Furthermore
coefficient g, is based on using a limiting procedure and should, therefore, stay bound
Previous practitioners had always used the mean fields evaluated at the zone center
in situations where they might have wanted to use the volume-averaged magnetic 1
variables. We now see, post facto, that their choice was a good one as long as they"
designing schemes that were second-order accurate.

It is very useful to ask what our reconstruction strategy produces when all the variati
are restricted to one dimension? Thus, say for example, that we choose that directic
be the x-direction. In that case Becomes a constant (because of the divergence-fre
condition) and B and B, can have variations along the x-direction provided we hav
B;,r =B and B = B, . Then many of the polynomial coefficients become zero. The onl
nonzero coefficients are given by

AxBJ AxBF

_ Rt _R— — . _Rt_p—- + — y . Xz
&=B; =B, =constant; =By =B_; co=B, =B,; b= vt Sy
(3.40)

The expressions forand & in Eqg. (3.40) make it very clear that it is useful to use limited
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slopes forAXB;r andA,B; . When we use limited slopes, our reconstruction strategy reduc
to MUSCL interpolation for one-dimensional variations; see vanLeer [44]. The fluxes tt
will be produced when using this divergence-free reconstruction strategy will, therefo
be exactly the same as the fluxes that will be produced by a zone-centered, higher c
Godunov scheme for numerical MHD in the limiting case of one-dimensional variatior
This clearly shows the equivalence of our new scheme for numerical MHD, which uses
new three-dimensional divergence-free reconstruction strategy, to a standard, zone-cent
higher order Godunov scheme that uses standard TVD reconstruction when all the variat
are restricted to lie along one direction. Our demonstration also serves to strengthen
claim made in Balsara and Spicer [7] thatin numerical MHD there is an equivalence betw
certain components of the higher order Godunov fluxes and the electric field.

Itis worthwhile to make several interesting points about the divergence-free reconstr
tion strategy that has been developed in the previous and present sections:

1. vanLeer [44] showed that the solution of a hyperbolic system in conservative fo
could be reduced to three simple steps: (i) make TVD reconstruction, (i) apply tl
Riemann solver and (iii) make conservative update. The innovations that have been n
in this section permit us to formulate a similar three-step plan for hyperbolic systems w
divergence-free vector fields that follow a Stokes law type evolution equation: (i) We ¢
use the results of this section to make a divergence-free TVD reconstruction of the ve
fields. (ii) Riemann solvers for many of these systems of equations have already been
signed and are catalogued in point 7) below. They can be applied to obtain upwinded flu:
(i) Divergence-free update strategies for vector fields have also been designed in Bal
and Spicer [7] and in Section Il of the present paper. They can be used to make a diverge
free update of the vector field.

2. Our divergence-free reconstruction strategy for magnetic fields, along with any T\
or WENO reconstruction of the zone-centered fluid dynamical variables, can be use
conjunction with a temporally second-order accurate Runge—Kutta or predictor—correc
time-stepping strategy to yield a spatially and temporally second-order accurate schem
MHD. A thorough examination of such schemes and their properties will be carried out
subsequent work.

3. Our reconstruction strategy has been developed in the simple case where the lin
is applied directly to the magnetic field components. This is tantamount to applying t
limiter to the primitives, with the magnetic field components being taken as the primitiv
along with the usual fluid dynamical primitives of density, pressure, and velocities. Hart
[27] showed the value of using the characteristic variables in the limiter. The slopes use
our scheme can also be obtained from such a characteristic reconstruction strategy, &
at a greater computational cost.

4. Earlierinthis section we have shown thatthe divergence-free reconstruction reduce
standard TVD reconstruction when all the variations are restricted to lie along one directi
A further connection can be made with dimension by dimension TVD reconstruction
focusing on the linear terms in Egs. (3.27) to (3.29). Equations (3.33) and (3.34) clec
show that the linear slopes are limited, thereby establishing the connection. Furtherm
Eqg. (3.32) and similar expressions fgr énd ¢ have to assume the form that they do in
order for the divergence-free condition in Eq. (3.31) to be satisfied. The quadratic ter
in Egs. (3.27) to (3.29) comprise differences of limited quantities and can, therefore,
expected to stay bounded.
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FIG.2. Anoldfine mesh (shown with red lines) that abuts a coarse mesh (shown with blue lines). The loca
of the newly introduced fine mesh (shown with dashed green lines) is such that it overlaps the old fine and cc
meshes. Straight injection can be used to assign magnetic field values from the old fine mesh to the new fine |
The layer of zones for which the reconstruction strategy from Section Il can be used to assign magnetic
values to the new fine mesh is also shown. The coarse mesh zones that abut fine mesh faces need the prolot
strategy that is developed in Section IV to assign magnetic field values to the new fine mesh.

5. vanLeer [44] also carried out the stability analysis for the advection of a scalar fi¢
when the limiter is applied to the scalar field. VanLeer’s stability analysis helped in pr
viding a firm conceptual foundation for zone-centered higher order Godunov schemes.
present work makes it possible to carry out the stability analysis for the divergence-f
advection of a vector field. This is especially true since the induction equation for MHD
linear in the magnetic field and the velocity. Such a stability analysis will be carried out
subsequent work and will provide a firm conceptual foundation for Stokes-law type upd
equations.

6. Itis possible to take an alternative view of our divergence-free reconstruction strate
In that view, realize that specifying the 7 (in 2D) or 17 (in 3D) independent coefficien
of the polynomials is equivalent to specifying the divergence-free field components ¢
their slopes at the zone faces. This then suggests that a Galerkin formulation for M
would be especially beneficial where one would evolve not just the magnetic field co
ponent at each zone face but also its first (or higher) moments in the plane of that f:
This could be done using the discontinuous Galerkin formulations in Cockburn and ¢
[19] or Lowrie, Roe, and vanLeer [35] and making suitable extensions to those forn
lations by using the ideas developed here. We will develop this direction in subsequ
work.

7. There are similar problems with preserving the divergence of the magnetic field
numerical electrodynamics; see Yee [45]; incompressible flow, see Harlow and Welch [



630 DINSHAW S. BALSARA

relativistic MHD, see Balsara [5]; and radiation MHD, see Balsara [3, 4]. Hence, tho
application areas would also benefit from the strategies developed here.

IV. DIVERGENCE-FREE RESTRICTION AND PROLONGATION
ON AMR HIERARCHIES

The problem of divergence-free restriction of magnetic fields in a staggered mesh 1
mulation is very simple. It consists of making an area weighted average of the magni
field component that is collocated on the faces of the fine mesh and assigning it to
corresponding face of the coarse mesh. Such a step should be carried out (along witl
electric field correction step that is detailed in the next section) whenever the fine ¢
coarse meshes are temporally synchronized. If the field on the fine mesh is divergence-
this combination of area-weighted restriction and electric field correction will result in
divergence-free field on the coarse mesh. The previous statement will be proved in the |
section.

The problem of divergence-free prolongation is far more intricate and interesting th
the restriction problem. To see the intricacy, see Fig. 2, which shows a fine mesh that a
a coarse mesh. The dotted lines indicate the region where we want to lay down a new
mesh. As one can see, a part of the new fine mesh will have zone faces that are alic
with the zone faces of the old fine mesh. The magnetic field components on those face
the new fine mesh can be assigned by straight injection of the magnetic field compon
from the old fine mesh. This will be a divergence-free assignment. The layer of coa
mesh zones that do not share a face with the fine mesh can also make a divergence
prolongation to the new fine mesh. This can be done by first fitting piecewise linear sloj
in the transverse directions to the field components on each of the faces of those zones
can then use the reconstruction theory developed in the previous section to reconstruc
divergence-free magnetic field in each of the coarse zones of interest. This reconstruc
can then be used to make a divergence-free prolongation to the new fine mesh. One w
naively think that the same strategy can be applied to the coarse mesh zones that sh
face with the fine mesh. However, such a naive application of the same strategy to tt
zones would produce a problem. To see the source of the problem, considefattes
that are shared between the old fine mesh and the coarse mesh in Fig. 2. Figure 3 pro
a blow-up of such an interface. Fitting a linear variation in the y- and z-directions to tl
coarse mesh’s,Bcomponent on those shared faces only provides three degrees of freec
on the coarse mesh face. However, the coarse mesh'’s x-faces overlap with four x-face
the old fine mesh. It is impossible for the piecewise-linear profile on the coarse mesh’s f
to match those four values in an integral sense. To achieve such a match we need to inc
a “yz” variation in the coarse mesh'sBomponent. Thus, when a coarse mesh’s face doe
not coincide with four fine mesh faces, we fit to it a profile given by Egs. (3.24) to (3.2
using the piecewise-linear profiles given by Egs. (3.18) to (3.23). However, in the m
general case, the coarse mesh’s faces can coincide with four fine mesh faces. In that
matching with the old fine mesh’s four face-centered fields requires us to use profiles of
form:

ABE  ABE ABE
YXy+ ZXZ+ YZ='x

Bux=%Ax/2,y,2 =B + = Ey+ = orzd

yz (4.1)
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FIG. 3. The interface between a fine and a coarse mesh. Face-centered magnetic fields that are needed
restriction step are shown. Edge-centered electric fields that are needed for the electric field correction ste
also shown.

ABE  ABE ALBT
By(X,y = +Ay/2, 2) = B Y x Y7z Y xz 4.2
vy Y/ 2 =By + = X T P Axaz (4.2)
ABE  ABE ABT
B,(X,Y, Z= +Az/2) = BF Zyy V2 Y2 vy 4.3
2(X, Y. /2) =B; + A <T Ay AXAyy (4.3)

To simplify the notation, we set the origin at the center of the coarse zone being conside
The coarse zone has edges of skee Ay, andAz. Our strategy for fitting profiles to the
coarse mesh’s zone faces can now be summarized as follows: For coarse mesh zone
that do not overlie old fine mesh zone faces, we simply set the crossterms (i.e., the last te
in Egs. (4.1) to (4.3) to zero and make piecewise-linear profiles using Egs. (3.18) to (3.:
On the other hand, for coarse mesh zone faces that do overlie old fine mesh zone f:
we do not make linear profiles but rather use the more general profiles given in Egs. (:
to (4.3) with nonzero cross terms. The values of the coefficients are then set by requi
that the variation on the coarse mesh’s zone face matches the four field components o
underlying fine mesh faces. An example will help. Say that teex Ax/2 face in EQ. (4.1)
overlies four fine mesh faces. In a short-hand notation, let {fmBiponents on those faces
be denoted by

by .+ = Bx(X=—AX/2,y = Ay/4,z = Az/4);
by, =BuX=—AX/2,y = Ay/4,z = —Az/d); o
b, = Bu(X=—AX/2,y = ~Ay/4, 2 = Az/4); '

X, —.+
b;_,_ =Bx(X=—AX/2,y = —Ay/4,z = —Az/4).
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Then the coefficients in Eq. (4.1) are given by

By = ( vt Th b B )

AyBy =40, +b__—b, _—b )
yz . X+, + _X,-‘r, _X. ,+ (45)
AyBy (x++ x —+bx+—_b 7+)
ABy = (x++ b;—— b_+ +b_—+)

On comparing Egs. (4.1) and (3.24) we see that we now have two extra terms
Bx(x=—AXx/2,Y, 2 and B(x= AX/2, Y, 2. Both those terms have a “yz” variation in
the x-faces. Matching the two “yz” variations at the two coarse zone boundaries requi
that we add two extra terms in the reconstruction polynomial @k By, z) in Eq. (3.27).
The minimal terms that give us that extra variation are given by adgigg a a,Xyz to the
polynomial expression for X, y, z). However, to have a divergence-free reconstructior
in the coarse zone, we have to do two more things:

1. Add a term b,y?z in the polynomial expression foryB, y, 2) in Eq. (3.28).
2. Add aterm ;;Zzyz2 in the polynomial expression forB, y, 2) in Eq. (3.29).

In an analogous fashion, on comparing Egs. (4.2) and (3.25) we see that we now f
two extra terms in B(x, y=—Ay/2, 2) and B,(x, y = Ay/2, z). Both those terms have a
xz" variation in the y-faces. To match that variation we again do three things:

1. Add aterm kxz + byy,Xxyz in the polynomial expression for B, y, 2) in Eq. (3.28).
2. Add a term @,x?z in the polynomial expression for B, y, 2) in Eq. (3.27).
3. Add a term g;,xz? in the polynomial expression for,B, y, z) in Eq. (3.29).

In a similar fashion, on comparing Egs. (4.3) and (3.26) we see that we now have t
extraterms in B(x, y, z = —Az/2) and B(x, y, z= Az/2). Both those terms have a “xy”
variation in the z-faces. To match that variation we again do three things:

1. Add aterm gXxy + Cyy,Xyz in the polynomial expression for,B, y, z) in Eq. (3.29).
2. Add a term @, x?y in the polynomial expression ford, y, 2) in Eq. (3.27).
3. Add aterm tag/yxy2 in the polynomial expression for,Bx, y, 2) in Eq. (3.28).

Putting all the terms together in Egs. (3.27) to (3.29) we get polynomials that are we
suited for prolongation as follows:

Bx(X, ¥, 2) = @ + &X + &Y + &,Z + 83X* + 8yXY + BeXZ

+ 82YZ + BuyrXYZ + B XPZ + By X2y (4.6)
By(X, ¥, 2) = bp + byX + byy + b,z + byxy + byyy? + by,yz
+ boXZ + byyzy?Z + by XYZ + by xy? (4.7)

B2(X, Y, 2) = Co+ CX + CyY + C,Z+ CuXZ + CyryzZ + CZ°
+ CayXY + Cyz2YZ* + CzrXZ* + CryzXyZ. (4.8)

Along with Eq. (3.30), the divergence-free condition now yields the following extra cor
straints:

Sxyz + 2t)/yz + 2Cyzz =0 (4-9)
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23(xz + bxyz + ZQ(ZZ =0 (4-10)
2a<xy + Zmyy + nyz = 0 (411)

Itis important to realize that they?’ variations in the twax-faces, the X2’ variations in
the two y-faces and the “xy” variations in the two z-faces provide six extra conditions. V
have introduced 12 extra polynomial coefficients in Egs. (4.6) to (4.8), which are requi
to satisfy three constraints. Thus, nine of the extra polynomial coefficients are independ
However, we only have six extra conditions at the zone faces with which to fix up ni
independent polynomial coefficients. Thus, the system of equations is under-determinec
we can make simplifying choices for three of the polynomial coefficients. These choices
made so that the resulting equations have as elegant and simple a structure as is pos
We also want the resulting prolongation polynomials to be closest in their structure
the reconstruction polynomials in the previous section. In particular, when the “yz,” “xz
and “xy” variations on the x-, y-, and z-faces, respectively, are set to zero, we want
prolongation polynomials to reduce transparently to the reconstruction polynomials in
previous section. These goals can be simply achieved by setting:

byyz = Cyzz = _axyz/4 (4.12)
Az = Cxzz = —byy,/4 (4.13)
Ay = bxyy = _nyz/ 4. (4-14)

Notice that when g, = byy, = ¢y, = 0, the additional polynomial coefficients trivially
become zero. Thus, with the above-mentioned simple choice, the equations for the pol;
mial coefficients become well-determined and the prolongation polynomials also reduc
the appropriate limits.

The polynomial coefficients can now be trivially evaluated. In fact, many of them are s
given by expressions that were built up in the previous section, hence we do not repeat t
here. Here we simply provide closed form expressions for new polynomial coefficients
coefficients that have changed from their analogues in Section 111.3:

1/ABf  AyB; AX?
= = Cryz—— 4.15
& 2( Ay + Ay =+ Cxyz 16 ( )
1/ABf  ABy AX?
== — 4.16
& 2( az T az ) TPeg (4.16)
1/ABF  AyBy
a; =~ e ST Line S (4.17)
2\ AyAz  AyAz
1 /A,BY  ABL
Ay = — e Lot S e S (4.18)
AX\ AYyAz  AyAz

To derive formulae for f by, by, and ky, from the formulae for g &, a,, and &y, re-
spectively, seta> b, b— c,c— a,x—y,y — z,z— x,andAy, — A, intheright-hand
sides of Egs. (4.15) to (4.18) above. Similarly, to derive formulae fpgg ¢y, and gy,
from the formulae for g &, a,, and gy, respectively, seta> ¢, b— a,c— b, x— z,
y — X, z— Yy, andAy, — A,y in the right-hand sides of Egs. (4.15) to (4.18) above.
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When the prolongation polynomial forsBs prolonged in an area-weighted fashion to
a face that has x xp and y and z extents given by ;] x [zo, 1], the resulting area-
averaged value of Bis given by

Y1+ Yo)
(Bx)area-avg = (80 + &X0 + 80XG) + (8 + ByXo + BoyX5) )/1723/0
(21 + 20) (Y1 +VYo) (21 + 2
+ (az T 8eXo + axxzx(z)) % + (q/z + axszO) Vi 2 Yo (22 > 0) .
(4.19)

Similar area-weighted prolongation can be carried out for the y- and z-components of
field. The previous formula and others like it for the other two directions can be used
make divergence-free prolongation of magnetic field components to the zone faces of ref
zones.

It is worthwhile to make several interesting points about the prolongation strategy i
we have developed in the present section:

1. Our prolongation strategy is a minimal extension of our reconstruction strategy. Wt
the cross terms on the zone faces are zero in Eqgs. (4.1) to (4.3), it reduces exactly tc
reconstruction scheme in the previous section.

2. The prolongation strategy developed here should be used for initializing the magn
field on newly formed fine meshes. The reconstruction strategy developed in Sectior
also has its uses. When a fine level in an AMR hierarchy takes two time steps for every
coarse level time step, we also need to provide the fine level’s halo zones with spatially
temporally second-order accurate values from the coarse level. Those values can als
provided by using the reconstruction strategy developed in Section Ill. The reconstruct
strategy developed in Section Ill has the advantage that one does not need to code u
extra logic associated with deciding whether to include or exclude the last terms in Egs. (-
to (4.3). This saves some float point operations.

3. Experience with AMR techniques applied to the Euler equations has shown that T
reconstruction of the conserved variables should be used in order to make conserve
prolongation of the fluid variables. We find that our minimal extension of the divergenc
free TVD reconstruction strategy yields a divergence-free prolongation strategy for
magnetic fields.

4. Just as Berger and Colella [12] used a volume-weighted averaging for their restrict
strategy, we use an area-weighted averaging as our restriction strategy for the mag
fields. This is because our magnetic fields are fundamentally area-weighted averages
as the conserved variables in a higher order Godunov scheme for the Euler equation:
fundamentally volume-weighted averages.

5. Our prolongation strategy is based on an integral formulation and is not dependen
any special algebraic tricks. As a result, it can be easily extended for making diverger
free prolongation on an AMR mesh with any refinement ratio. For example, refineme
ratios of four or eight can be achieved by applying the present strategy recursively. |
other refinement ratios, new formulas would have to be derived to account for the
ditional degrees of freedom needed to match the increased number of existing fine-
faces.

6. The formulae can also be easily extended to any orthogonal mesh geometry, suc
cylindrical or spherical, and are not restricted to Cartesian geometry.



DIVERGENCE-FREE AMR-MHD 635

7. Peyrard and Villedieu [36] have presented a scheme that works on two-dimensic
triangulated meshes and preserves the divergence of the magnetic field only in aweak s
Our prolongation strategy produces a divergence-free reconstruction of the magnetic
at all points in the zone and keeps B = 0 up to machine precision. We have also beer
able to show that the strategy presented here also goes over for triangular and tetrah
meshes. As a result, it is especially useful for unstructured meshes and cut-cell approa
because one can develop exact integrals for fine zone faces that are not perfectly ali
with the coarse zone faces.

8. In two dimensions, say a coarse mesh face overlies two fine mesh faces. In that
fitting a field value and a piecewise-linear slope in the transverse direction on that co:
mesh face will allow us to match the two field components on the fine mesh faces. Tt
the extensions to three-dimensional reconstruction that are described in this section ar
needed. Therefore, in two dimensions, the reconstruction strategy described in Section
also doubles up as a prolongation strategy.

9. The methods developed in this section and the previous one are also importan
multigrid processing of the MHD equations on adaptive meshes. Such multigrid process
could turn out to be very important in designing time-implicit schemes for MHD. The woi
of Jameson [28] and Gropgt al.[25] has already demonstrated the importance of multileve
processing for the Euler equations. The work of Balsara [6] has already demonstratec
importance of multigrid methods for the equations of radiative transfer. Thus, the importal
of multigrid processing for the MHD equations seems almost evident. Multigrid metho
would also be important for resistive MHD.

10. Our divergence-free prolongation strategy is actually a divergence-preserving st
egy when Egs. (3.32) and similar expressions foahd ¢ are used without imposing the
constraint a+ by + ¢, = 0. This can be very useful for mildly compressible hydrodynam
ical problems or incompressible flow problems where wall effects can cause vorticity to
built up on a mesh.

11. Janhunen [29] presents an interesting alternative to the scheme of Powell [37], wi
tries to satisfy thév - B = 0 constraint up to discretization error, but not machine error. |
may be argued that such a scheme might be adequate for AMR-MHD calculations, pert
without the use of the divergence-free prolongation formulae presented here. Such a scl
would have two sources of magnetic field divergence: (a) the underlying scheme itself
(b) the prolongation scheme at the interfaces between fine and coarse meshes. The pre
with such a scheme is that the divergence of the magnetic field, once generated in wha
fashion, will flow with the plasma. In space physics problems such a divergence of
field builds up at the stagnation point of the magnetosphere and pollutes the solution tf
However, the stagnation point is the very place where one is likely to want an accur
solution. Similarly, in accretion problems in astrophysics, the divergence of the field w
build up at the central object and pollute the solution there. This is usually the very ple
where one wants an accurate solution.

V. THE ELECTRIC FIELD CORRECTION STEP AT FINE-COARSE INTERFACES

In the previous section we briefly discussed the problem of restriction in a stagge
mesh formulation. This ensures that a coarse mesh that shares a face with four fine
faces will always have the best possible estimate for the magnetic field when the fine
coarse meshes are temporally synchronized. For example, take the coarse mesh in Fic
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having edges of sizax, Ay, andAz and take the fine mesh in Fig. 3 as having edges ths
are half that size. The coarse mesh takes a time step ofsiego from time t to time
t"*1. The time step equation for‘{g can be written as

At 12 12y At i1 +1/2
Brf)Ql = B?,x - A_y(Eg-; 2 Er:llz / ) - E(Eg,y /2 - Eg.y / ) (5-1)

The coarse mesh takes two time steps, each of/siz2, to traverse the same time interval.
The two time step equations fof pcan be written as

At At
n+1/2 nHl/4  ntl/4 nrl/4  ntl/a
bl,x /2 = b?,x - ?y (ez,z e €17 / ) - E(el,y /_ %,y / ) (5.2)
At At
1 n+1/2 n+3/4  n+3/4 n+3/4  nt3/4
bt = by ? - Ky(%,z ) — E(ew - ee,y/ )- (5.3)

Similar equations can be written fof i bj,, and . At a time ! the restriction step

requires us to synchronizé/8 with b, b3, b5E, and B! as follows:

B = (bR b + B+ ). 54

However, a look at Fig. 3 will readily show that restriction, taken by itself, cannot ensu
consistency or divergence-free time-evolution. The reason is fﬁ,ét d&ter Eqg. (5.4) is
applied to it is different from 5,;1 that was produced by Eq. (5.1). Thus, the divergence i
the first coarse mesh zone that abuts the fine mesh zones will be nonzero &t tiafeer
the restriction step, even if it were zero before the restriction step was applied attime t
and at all times prior td't?, i.e., say at time"t Examining Egs. (5.2) and (5.3) and others
like them shows us that imposing Eq. (5.4) has implicitly caused us to change the upc
step for B, from Eq. (5.1) to the update step

B™l_pn _ ﬁ 1 n+1/4 n+1/4 n+3/4 n+3/4
1Ix — 4( )

1.x Ay e&z + e&,z + %,z + e6.z

1 n+1/4 n+1/4 n+3/4 n+3/4
ge ey e )

4

A1, ni1/a +1/4 +3/4 +3/4
- g Y g

1
_ 2(9231/4 + e2;1/4 + 623,3/4 + 6233/4)} ’ (5_5)

where we have assumed that an equation such as Eq. (5.4) also holdsgtitnplying that

a similar restriction step was enforced at tirfieTthis is equivalent to replacing the coarse
mesh'’s electric fields with the best spatially and temporally interpolated electric fields frc
the fine mesh. The loss of divergence-free magnetic field structure on the AMR hierar
after restriction stems from examining the time-evolution of magnetic field componer
like BY,, B3, BY,, and B ,, which lie on coarse mesh faces that share an edge with tt
fine mesh. In the course of temporal evolution from tifh@tiime 1 these magnetic field
components have not used the spatially and temporally interpolated electric fields from

fine mesh in their time step equation. From Eq. (5.5) we see thaths, on the other
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hand, used the spatially and temporally interpolated electric fields from the fine mesh ir
time step equation. Had we consistently used the same electric fields for updairg B
wellas B, By, BY ;, and B ,, the problem would not have arisen and the magnetic fiel
on the coarse mesh would have remained divergence-free after the restriction step. T
the problem is entirely analogous to the flux correction problem that arises in the AN
processing of the Euler equations as explained in Berger and Colella [12]. The solutior
therefore, also very similar. The solution simply consists of modifying the updated fiel
BYL' BSYY BYLY and B at time £+ so that their update is equivalent to our having
used the best spatially and temporally interpolated electric fields from the fine mesh. T
is done as follows:

At (1
BT = BIj - (Z (€ + b+ + ) — ET;M) (5.6)
BN+l _ g+l At (1 ar1a | nrla |, 034 na3sa En+1/2 57
17 =B17 + AX Z(el,y t&y tey +6&, ) Y ) (5.7)

Similar equations can be written fo5&" and B}%".

We call Egs. (5.6) and (5.7) the electric field correction step because they are carried o
afashion thatis analogous to the flux correction step in Berger and Colella [12]. Applicat
of such a step to all the magnetic field components on the coarse mesh that need sl
correction step restores the divergence-free magnetic field structure on the coarse 1
after a restriction step. Just as the flux correction step in Berger and Colella [12] restc
the consistency of the fluxes at the interface between fine and coarse meshes, the el
field correction step described here restores the consistency of the electric fields a
interface between fine and coarse meshes. In restoring this consistency, the flux corre
step ensures conservative evolution of the flow in an AMR hierarchy and, in a complet
analogous fashion, the electric field correction step ensures divergence-free evolution o
magnetic fields in an AMR hierarchy. Restoring the consistency of the fluxes and elec
fields at the interface between fine and coarse meshes also helps stabilize the time-u
strategy for the AMR hierarchy, thereby enabling it to evolve with the maximal Coura
number that is permitted by the underlying higher order Godunov scheme.

VI. RESULTS

The results presented in this section were carried out with the RIEMANN framewa
for computational astrophysics, which incorporates the following advances in parallel, s
adaptive numerical MHD:

1. Afast TVD scheme which draws on the ideas in Roe and Balsara [39], Balsara [1,
and Balsara and Spicer [7] was used as the underlying hyperbolic system solver. The scl
is not dimensionally swept but rather uses a multistage, second-order accurate Runge—|
update strategy, which permits a maximal Courant number of 0.4. That Courant nun
was used on all levels of the AMR hierarchy in all the problems presented here show
that our time step subcycling strategy works efficiently. The Balsara and Spicer [7] sche
for divergence-free time-update of magnetic fields was used on each level in the Al
hierarchy.

2. The magnetic fields on each newly formed fine level were initialized in two stage
First, if it was possible to use the magnetic fields from the old fine level, then those fie
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were assigned to the corresponding locations of the newly formed fine level. Second,
those face-centered magnetic field locations that could not be initialized via the first st
divergence-free prolongation from Section IV was used to prolong the magnetic fields fri
the parent level to the newly formed fine level. This two-stage strategy ensures that €
newly formed fine level would always have the best possible representation of magn
fields that could be assigned to it.

3. Divergence-free reconstruction from Section Il was used to provide a divergence-f
prolongation of the coarse level magnetic fields to the halo (ghost) zones of the fine le
Spatially and temporally second-order accurate, divergence-free interpolation was use
that the halo zones of each fine level always had the best possible representation o
magnetic field that the coarse level could provide even when its time step was subcyc
The vanLeer limiter was used in place of the minmod limiter in Egs. (3.18) to (3.23)
permit a slightly smoother structure in the magnetic fields being prolonged.

4. When prolonging the zone-centered, conserved variables we used a TVD reconst
tion for each zone from which the conserved variables were to be prolonged. This enst
that we were using a fully conservative prolongation strategy for the conserved variabls

5. Restriction of magnetic field variables was done via the area-weighted restrict
strategy given in Section IV. This gives us a divergence-free restriction strategy for 1
magnetic fields belonging to coarse level zones that overlap fine level zones.

6. Restriction of conserved variables was done via the volume-weighted restriction st
egy detailed in Berger and Colella [12]. This gives us a conservative restriction strategy
the conserved variables belonging to coarse level zones that overlap fine level zones.

7. The electric field correction strategy from Section V was used to restore divergen
free magnetic fields to the coarse level zone faces that share a zone edge with the fine—c
interface.

8. The flux correction strategy from Berger and Colella [12] was used to restore fi
conservation to the coarse level zones that share a zone face with the fine—coarse intel

9. As explained in Section V, the electric field and flux correction steps restore cons
tency to the time-update of the AMR hierarchy. As a result, each mesh in the AMR hierarc
can evolve with the full CFL number that is permitted by the underlying hyperbolic syste
solver.

10. Flagging strategies described in Lohner [32, 33] and Pateall [38] were used to
flag locations in the flow that develop singularities (such as shocks, contact discontinuit
and rotational discontinuities) and are, therefore, in need of refinement. The RIEMAR
framework actually incorporates a slew of physics-based flagging strategies that are
alogued in Balsara and Norton [8]. The appropriate flagging strategies are automatic
swapped in or swapped out based on the physics of the problem being solved.

11. The regridding strategy in Berger and Rigoutsos [13] andéeill. [10] was used.
We modified the regridding strategy slightly to ensure that the levels remain properly nes
one within the other. This is essential for enforcing the electric field and flux correcti
steps.

12. The parallelization strategy from Balsara and Norton [8] was used to ensure h
levels of parallel processing efficiency.

Two test problems, both of which are three-dimensional, are presented which illustr
divergence-free AMR-MHD. The first test problem consists of a strong magnetosonic she
interacting with a dense blob of plasma, i.e., a cloud. The second test problem is drawn fi
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supernovaremnant (SNR) simulations and consists of setting off a strong explosioninan
netized medium. A test problem should be simple enough that it can be set up and run c
easily. Inthat spirit, both test problems have been designed so that they can be setup on1
small root grids and use only a couple of levels of refinement. Just using two levels of refi
ment in these test problems, however, produces a dramatic improvement in the soluti
There is no restriction on increasing the number of levels of refinement used, at the exp
of increased computational time. We have used two levels of refinement here because
permit all the steps in our divergence-free AMR-MHD strategy to be fully exercised.

Vl.a. Shock—Cloud Interaction

This test problem was motivated by a somewhat similar test problem in Dai and Woodw
[22]. A 96 x 64 x 64 zone root grid was used to cover a Cartesian domain of ext€nb|
1.0] x [—0.5, 0.5]x [—0.5, 0.5]. The majority of the computational domain was filled with
a low density plasma withip, P, %, vy, v, By, By, B,) given by(1,1,0,0,0,2,2,2 A
cloud was initialized at the origin with a radius of 0.3 length units and a density that
10 times larger than that of the low density plasma that initially fills most of the vo
ume. The density of the cloud was given a linear taper of sjA28 length units. Such
a linear taper can only be represented on the second level of refinement in an AMR
erarchy. Except for the density, the remaining flow variables in the cloud matched
variables in its ambient plasma. A Mach 10 magnetosonic shock was initialized-at x
—0.45. The postshock region was initialized with flow varialgesP, \«, vy, V,, By, By, B,)
given by (3.91109, 253.724, 13.83880.005,—0.005, 2.0, 7.84323, 7.843R3The x =
—0.5 boundary was treated as an inflow boundary. Xke 1.0 boundary was treated as
an outflow boundary. The remaining boundaries were extrapolative so that flow featt
could propagate off the computational domain if they had outwardly propagating char
teristic fields. The problem was run to a time of 0.0653 time units. Two levels of refineme
were permitted. The calculation was carried out on a parallel supercomputer using dot
precision arithmetic. While the RIEMANN framework has achieved significant speedu
over the baseline performance numbers reported in Balsara and Norton [8], the scalal
is similar to that reported in the previous reference.

Figure 4 shows various flow quantities in the xz plane at a time of 0.0251 units. Figure
shows the logarithm of the density, which clearly illustrates that the shock has engul
half the surface area of the cloud. In doing so, a bow shock has been set up in the re
downstream of the shock. Because of the cloud’s higher density a magnetosonic shocl
begun to slowly propagate through and compress the leftward-facing part of the clo
Figure 4b shows the logarithm of the pressure. Figure 4c shows the Mach number
Figure 4d shows the magnitude of the magnetic field. They all show signatures of the sh
structures mentioned above. Figure 4e is a color-coded representation of the two leve
refinement used in this test problem. The root grid is colored blue; the first level of |
finement is colored yellow; the second level of refinement is colored red. We see that
adaptively refined meshes have tracked the time-evolving magnetosonic shocks. Thus
flagging and regridding routines have constructed the refined meshes in just those reg
where the presence of shocks or contact discontinuities would call for them. We also
that the mesh refinement has caused all the discontinuities to be represented very cr
on the computational domain so that the simulation genuinely looks like it was done o
384 x 256 x 256 zone mesh. Figure 4f shows the ratio of the undivided divergence of t
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0.0251

logdensity logpressure

Fig 4a

0.0251 26.8814 0.0251

Machnumber Bfield-magnitude

Fig 4c Fig 4d

3.80616e-15 0.0251

divBbyB

Fig 4e Fig 4f

FIG. 4. Selected variables in the central x-z plane from the shock-cloud test problem at a rather early t
of 0.0251. Figure 4a shows lggdensity). Figure 4b shows lgg(pressure). Figure 4c shows the Mach number.
Figure 4d shows the magnitude of the magnetic field. Figure 4e shows a color-coded representation of the I
in the AMR hierarchy. Figure 4f shows the ratio of the undivided divergence of the magnetic field to the to
magnetic field.

magnetic field to the magnitude of the magnetic field. It is a good measure of the builc
of divergence in this problem. We see that this ratio is less thah*1@hich is exactly

what we would expect in a calculation that was done in double precision. Figure 4f show
measure of the undivided divergence in ¥aglane. However, in the course of carrying out
this three-dimensional simulation we monitored the divergence of the magnetic field in
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-1.16541e-10

logpressure

logdensity

Fig 5a

0.0653 5.51013e-40 55.4198 0.0653

o’
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Bfield-magnitude

Fig 5d

Machnumber

-1.12071e-14 1.5137e-14 0.0653

5.51013e-40 3 0.0653

divBbyB

Fig Se Fig 3f

FIG. 5. Selected variables in the central x-z plane from the shock-cloud test problem at a rather late tim
0.0653. (a) log, (density). (b) log, (pressure). (c) the Mach number. (d) the magnitude of the magnetic fielc
(e) a color-coded representation of the levels in the AMR hierarchy. (f) the ratio of the undivided divergence
the magnetic field to the total magnetic field.

whole volume and found that it has the same order of magnitude as that shown in Figure
We, therefore, verify that our divergence-free AMR-MHD scheme has produced genuin
divergence-free evolution of the magnetic field even in this rather stringent problem t
has strong, time-evolving magnetosonic shocks.

Figure 5 shows the same flow quantities that were shown in Fig. 4 at a time of 0.0653 ur
Thisis alate time inthe evolution of the shock—cloud problem. We see from Figs. 5ato 5d1
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the shock that was propagating through the cloud in Fig. 4 has by this late time compre:
the whole cloud and passed beyond it. (When that shock reached the rightward-fa
boundary of the cloud, it impulsively accelerated the lighter ambient material, forming
jet.) In Figs. 5a and 5¢ we can see the jet connecting the cloud’s rear surface to the shoc
has passed beyond it. Strong magnetic field structures have formed at the leftward-fa
surface of the cloud because of compressional effects. Strong magnetic field structures
also formed behind the cloud in and around the jetted region as a result of a combina
of compression and field stretching. The sheared interface at the jet's surface launt
shear Alfven waves, which show up prominently in Fig. 5d. The leftward-facing bow sho
becomes weaker as time progresses so that it no longer triggers refinement at these
times. The cloud’s boundary, the jet that propagates from the cloud’s surface and the st
magnetosonic shock that has completely engulfed the cloud are the three prominent
structures that clearly trigger refinement as shown in Fig. 5e. Figure 5f clearly shows t
even at this late time the divergence has not built up substantially. The ratio of the undivic
divergence to the magnitude of the magnetic field is still well below!30/Ne have also
monitored the divergence of the magnetic field in the whole volume and found that it t
the same order of magnitude as that shown in Fig. 5f. As a result, we have verified that
AMR-MHD scheme is truly divergence-free over long integration times.

Figures 4f and 5f show a speckled structure for the divergence of the magnetic field anc
speckled pattern develops smaller scale structure on the finer meshes. Thus, one might
thought that this provides a small wavelength instability which propagates across refinen
levels via the restriction and prolongation operators used here. One might even raise the
cern that this might provoke a numerical instability. However, we see no evidence for st
instabilities. We believe that this is because we have used divergence-free reconstructic
magnetic fields with suitable limiters for prolonging the magnetic field variables.

VI.b. Supernova Blast Wave

Our second test problem is motivated by the work of Balsara, Benjamin, and Cox [
A 64 x 64 x 64 zone root grid was used to cover a Cartesian domain of exte2@,[
20] x [—20, 20]x [—20, 20]. The majority of the domain was initialized with a plasma with
flow variables(p, P, %, vy, v, By, By, B,) given by (1, 0.813428, 0, 0, 0, 3.29006, 0,.0
An initially spherical supernova blast wave was initialized so that it was centered at 1
origin and had a radius of 1.25 length units. This radius corresponds to the size of t
zones on the root grid. Had such a problem been run on the root grid alone, the resul
supernova blast would have been highly anisotropic because of mesh imprinting. Bece
the problem was recursively initialized on two further levels of refinement, sufficiently mau
zones were available on the finest level to produce a simulation that was free of strong n
imprinting. The plasma within the supernova was initialized with a density of 18.017383
and a pressure of 1033422.167. The fluid within the sphere that was initially occupied
the supernova was given an outward-going velocity profile that was radially oriented ¢
linearly increasing with the radius. The fluid’'s speed at a radius of 1.25 length units w
350.582016 units. The boundary conditions play no role in this problem and can be se
periodic or continuitive. The problem was stopped a little before the supernova blast |
the boundary. This corresponds to a stopping time of 0.11 units. Two levels of refinem
were permitted in this test problem. The RIEMANN framework was again used in dout
precision mode for this simulation.



DIVERGENCE-FREE AMR-MHD 643

Figure 6 shows various flow quantities in tkeplane at a time of 0.02097 units. Figure 6a
shows the logarithm of the density which clearly shows an outward-going fast mag
tosonic shock, a contact discontinuity, and an inward-going fast magnetosonic she
Figure 6b shows the logarithm of the pressure which tracks the two shocks quite w
Figure 6¢ shows the Mach number and Fig. 6d shows the magnitude of the magnetic fi
The field gets strongly compressed by the explosion, producing the barrel-like struct
visible in Fig. 6d. Figures 6a to 6d all show signatures of the shock structures mentio
above. Figure 6e is a color-coded representation of the two levels of refinement used in
test problem. The color coding is similar to Fig. 4e. We see that the refined meshes
tracked the time-evolving magnetosonic shocks. Figure 6f shows the undivided divergel
In this problem, we do not plot out the ratio of the undivided divergence to the magne
field magnitude because the expanding blast wave sweeps out almost all of the mag
field that was initially present in the central region. We see from Fig. 6d, however, that 1
compressed magnetic field has a magnitude of about 10 units. Thus, Fig. 6f does cor
that our AMR-MHD simulation of a supernova blast wave has been divergence-free uy
machine accuracy. Figure 7 shows the same flow variables that were shown in Fig. 6
late time of 0.11 time units. The divergence-free evolution of the magnetic field is ag:
confirmed. As in the previous test problem we monitored the evolution of the divergence
the magnetic field in the whole volume and confirmed that the divergence was of the s:
magnitude as shown in Figs. 6f and 7f. All the shock structures in Figs. 6 and 7 are cris
resolved so that the simulation looks as if it had been done on & 256 x 256 zone
mesh. In Balsara, Benjamin, and Cox [9] we have actually carried out such simulations
uniform meshes that were much finer than the root grid used here. All the flow features in
simulation reported here were also seen to occur in the high resolution uniform mesh ¢
ulations. This gives us further confidence that our RIEMANN framework for AMR-MHL
is working well.

The present test problem is an even more stringent test problem for AMR-MHD th
the previous one. It is perhaps among the most stringent test problems that can be
signed in computational astrophysics. We have, therefore, verified that our AMR-MF
scheme, as implemented in the RIEMANN framework for computational astrophysics
truly divergence-free for some of the most stringent test problems that we have been
to design.

VIl. CONCLUSIONS

Several advances in divergence-free AMR-MHD are reported here. We list them bel

1. Ageneral strategy is presented for the time-update of systems of equations that sa
a Stoke’s law type equation on AMR hierarchies. Several such physically important syste
are identified with special focus on MHD.

2. Just as Berger and Colella [12] reduced the conservative time-update of the E
equations on an AMR hierarchy to the application of a few simple steps, we have reducec
divergence-free time-update of the MHD equations on an AMR hierarchy to the applicat
of a few simple steps. The steps have been summarized in Section VI.

3. Itis shown that the divergence-free time-update scheme of Balsara and Spicer [7]
be elegantly extended to the resistive MHD case. Various arguments are presented to
that the face-centered collocation of magnetic field components is the collocation of chc
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FIG. 6. Selected variables in the central x-z plane from the Supernova blast test problem at an early tim
0.02097. (a) log, (density). (b) log, (pressure). (c) the Mach number. (d) the magnitude of the magnetic field. (¢
a color-coded representation of the levels in the AMR hierarchy. (f) the undivided divergence of the magnetic fi

for MHD and other systems of equations that satisfy a Stoke’s law type time-evoluti
equation.

4. A significant advance has been made in the divergence-free reconstruction of \
tor fields. It has been shown that for one-dimensional variations, such a reconstruc
strategy reduces to the familiar TVD property. Yet in multiple dimensions, it goes we
beyond it.
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0.501202 011

logdensity logpressure
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Fig 7c Fig 7d

£.85605e-14 0.1
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FIG. 7. Selected variables in the central x-z plane from the Supernova blast test problem at a late t
of 0.11. (a) log, (density). (b) log, (pressure). (c) the Mach number. (d) the magnitude of the magnetic field. (e)
color-coded representation of the levels in the AMR hierarchy. (f) the undivided divergence of the magnetic fi

5. Divergence-free prolongation of magnetic fields on an AMR hierarchy can be carr
out via a very slight extension of the divergence-free reconstruction scheme mentione
the previous point.

6. A divergence-free restriction strategy is presented, which consists of using ar
weighted averaging of magnetic fields from fine mesh faces.
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7. An electric field correction strategy is presented, which restores the consistenc
electric fields at a fine-coarse interface in the AMR hierarchy.

8. Because of the above four points, the time step can be subcycled on finer me:
without loss of the divergence-free property of the magnetic fields. Points (4) and (5)
also essential for the time step subcycling because they provide for a robust and st
numerical strategy. Another pleasant consequence of the above four points is that ¢
mesh in the AMR hierarchy evolves with the full Courant number that is permitted by tl
underlying hyperbolic system solver. This ensures that there is no undue loss of efficie
in the time-update of the MHD equations on AMR hierarchies.

9. The above-mentioned innovations have been incorporated in the RIEMANN fran
work for parallel, self-adaptive computational astrophysics. Several stringent test proble
have been presented and it is shown that the method presented in this paper for AMR-V
is truly divergence-free.
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